Duration 2 hours

Answer the following questions. Calculators and mobile telephones are not allowed.

- 1. The region R is bounded by the following curves: $y = \tan x$, y = 1 and x = 0. Sketch the region R and find the volume of the solid generated by revolving the region R about the line y = 1. (5 points)
- 2. Differentiate the following function $f(x) = (\cos^{-1} y + 1)^x + x^{\operatorname{csch}(y)}$ (4 points)
- 3. Let $f(x) = \frac{2^x 2^{-x}}{2} + 2$ Show that f^{-1} exists. Find $f^{-1}(x)$, state its domain and its range. (4 points)
- 4. Show that the only functions f(x) such that f'(x) = f(x) are the functions Ce^x , where C is a constant. (4 points)
- 5. Answer ONLY ONE PART (either (a) or (b)). (5 points each)
 - (a) Find the area of the region that is inside the graph of $r = \sin \Theta$ and outside the graph of $r = i \sin \Theta$.
 - (b) Find the length of the curve $x = \sin t$, $y = \frac{1}{4}\cos 2t$, where $0 \le t \le \frac{\pi}{2}$.
- 6. Determine whether the integral $\int_0^\infty e^{-x} \sin x dx$ converges or diverges, and if it converges find its value. (4 points)
- 7. Discuss and sketch the graph of the equation

$$x^2 - 4y^2 - 4x - 8y - 4 = 0$$

- 8. Evaluate $\lim_{z \to \infty} \left[\frac{(3)^{\frac{1}{z}} + (12)^{\frac{1}{z}}}{2} \right]$
- 9. Evaluate the following integrals:

(4 pcints)

(4 points)

(4 points each)

(a)
$$\int \frac{\ln(\tan^{-1}\sqrt{x})}{2+2\cos x + \sin x} dx$$
 (b)
$$\int \frac{\ln(\tan^{-1}\sqrt{x})}{x^{\frac{1}{2}} + x^{\frac{3}{2}}} dx$$

$$\int \frac{x^4+1}{x(x^2+2x+2)} dx$$